Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Conserv ; 256: 108995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580542

RESUMO

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

2.
PeerJ ; 9: e10809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717676

RESUMO

Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were believed to be limited outside of the low nutrient tropical and subtropical open ocean; however, emerging evidence suggests that N2 fixation is also a significant process within temperate coastal waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal waters of southern Australia during Austral autumn and summer. Relative to previous studies in open ocean environments, including tropical northern Australia, and tropical and temperate estuaries, our results indicate that high rates of N2 fixation (10-64 nmol L-1 d-1) can occur within the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 d-1) were observed in the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation could be an important source of new N in the region as dissolved inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was significantly influenced by salinity and SiO4 concentrations, reflecting the transition from UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates were observed. In contrast to observations in other environments, no seasonal patterns in N2 fixation rates and diazotroph community structure were apparent. Collectively, our findings are consistent with the emerging view that N2 fixation within temperate coastal waters is a previously overlooked dynamic and potentially important component of the marine N cycle.

3.
Sci Data ; 7(1): 297, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901022

RESUMO

Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0-60°S, 110-160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.


Assuntos
Biomassa , Zooplâncton , Animais , Austrália , Oceano Índico , Oceano Pacífico
4.
Sci Data ; 5: 180207, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30325350

RESUMO

Larval fishes are a useful metric of marine ecosystem state and change, as well as species-specific patterns in phenology. The high level of taxonomic expertise required to identify larval fishes to species level, and the considerable effort required to collect samples, make these data very valuable. Here we collate 3178 samples of larval fish assemblages, from 12 research projects from 1983-present, from temperate and subtropical Australian pelagic waters. This forms a benchmark for the larval fish assemblage for the region, and includes recent monitoring of larval fishes at coastal oceanographic reference stations. Comparing larval fishes among projects can be problematic due to differences in taxonomic resolution, and identifying all taxa to species is challenging, so this study reports a standard taxonomic resolution (of 218 taxa) for this region to help guide future research. This larval fish database serves as a data repository for surveys of larval fish assemblages in the region, and can contribute to analysis of climate-driven changes in the location and timing of the spawning of marine fishes.


Assuntos
Peixes , Zooplâncton , Animais , Austrália , Bases de Dados Factuais , Ecossistema , Larva , Especificidade da Espécie
5.
Sci Data ; 5: 180130, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015804

RESUMO

Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences.


Assuntos
Archaea/genética , Bactérias/genética , Microbiota , Austrália , Biodiversidade , Oceanos e Mares , Análise de Sequência de RNA , Microbiologia da Água
6.
Sci Data ; 5: 180018, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461516

RESUMO

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Assuntos
Clorofila , Austrália , Bases de Dados Factuais , Ecossistema , Fitoplâncton , Água do Mar
7.
Toxicon ; 58(1): 101-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21640130

RESUMO

Farmed greenlip abalone Haliotis laevigata were fed commercial seaweed-based food pellets or feed pellets supplemented with 8 × 105 Alexandrium minutum dinoflagellate cells g⁻¹ (containing 12 ± 3.0 µg STX-equivalent 100 g⁻¹, which was mainly GTX-1,4) every second day for 50 days. Exposure of abalone to PST supplemented feed for 50 days did not affect behaviour or survival but saw accumulation of up to 1.6 µg STX-equivalent 100 g⁻¹ in the abalone foot tissue (muscle, mouth without oesophagus and epipodial fringe), which is ∼50 times lower than the maximum permissible limit (80 µg 100 g⁻¹ tissue) for PSTs in molluscan shellfish. The PST levels in the foot were reduced to 0.48 µg STX-equivalent 100 g⁻¹ after scrubbing and removal of the pigment surrounding the epithelium of the epipodial fringe (confirmed by both HPLC and LC-MS/MS). Thus, scrubbing the epipodial fringe, a common procedure during commercial abalone canning, reduced PST levels by ∼70%. Only trace levels of PSTs were detected in the viscera (stomach, gut, heart, gonad, gills and mantle) of the abalone. A toxin reduction of approximately 73% was observed in STX-contaminated abalone held in clean water and fed uncontaminated food over 50 days. The low level of PST uptake when abalone were exposed to high numbers of A. minutum cells over a prolonged period may indicate a low risk of PSP poisoning to humans from the consumption of H. laevigata that has been exposed to a bloom of potentially toxic A. minutum in Australia. Further research is required to establish if non-dietary accumulation can result in significant levels of PSTs in abalone.


Assuntos
Dinoflagellida/química , Gastrópodes/metabolismo , Toxinas Marinhas/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Humanos , Toxinas Marinhas/farmacologia , Medição de Risco , Intoxicação por Frutos do Mar/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...